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Abstract

Qualitative causal relationships compactly express the direction, dependency, temporal con-
straints, and monotonicity constraints of discrete or continuous interactions in the world. In every-
day or academic language, we may express interactions between quantities (e.g., sleep decreases
stress), between discrete events or entities (e.g., a protein inhibits another protein’s transcription),
or between intentional or functional factors (e.g., hospital patients pray to relieve their pain). Ex-
tracting and representing these diverse causal relations are critical for cognitive systems that operate
in domains spanning from scientific discovery to social science. This paper presents a transformer-
based NLP architecture that jointly extracts knowledge graphs including (1) variables or factors
described in language, (2) qualitative causal relationships over these variables, (3) qualifiers and
magnitudes that constrain these causal relationships, and (4) word senses to localize each extracted
node within a large ontology. We do not claim that our transformer-based architecture is itself
a cognitive system; however, we provide evidence of its accurate knowledge graph extraction in
real-world domains and the practicality of its resulting knowledge graphs for cognitive systems
that perform graph-based reasoning. We demonstrate this approach and include promising results
in two use cases, processing textual inputs from academic publications, news articles, and social
media.

1. Introduction

People express causal relationships in everyday language and scientific texts to capture the relation-
ship between quantities or entities or events, compactly communicating how one event or purpose
or quantity might affect another. These causal relations are not complete mechanisms in them-
selves, but we use them frequently in everyday language and formal instruction to express causality,
allowing us to avoid unnecessary detail or to hedge when details are uncertain.

Identifying these causal relationships from natural language—and also properly identifying the
factors that they relate—remains a challenge for cognitive systems. This difficulty is due in part to
the expressiveness of our language, e.g., the multitude of ways we may describe how an experimen-
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tal group scored higher on an outcome than a control group, and also due to the complexity of the
systems we describe.

This paper describes an approach to automatically extracting (1) entities that are the subject
of causal relationships, (2) causal relationships describing mechanisms, intentions, monotonicity,
and temporal priority, (3) multi-label attributes to further characterize the causal structure, and (4)
ontologically-grounded word senses for applicable nodes in the causal graph. Our primary claim is
that context-sensitive language models can detect and characterize the qualitative causal structure
of everyday and scientific language in a representation that is usable by cognitive systems. As evi-
dence, we present our SpEAR transformer-based NLP model based on BERT (Devlin et al., 2019)
and SpERT (Eberts & Ulges, 2020) that extracts causal structure from text as knowledge graphs,
and we present promising initial results on (1) characterizing scientific claims and (2) representing
and traversing descriptive mental models from ethnographic texts.

The present work aims to infer causal, functional, and intentional relational structure, so its
output knowledge representations are relevant to cognitive systems; however, the NLP methodology
that performs the inference is not intended to model human cognition. The nodes within the causal,
semantic graphs produced by SpEAR link to the WordNet word sense hierarchy (Fellbaum, 2010)
to facilitate subsequent reasoning. Unlike rule-based parsers that use ontological constraints during
the parsing process, our NLP architecture infers ontological labels (i.e., WordNet word senses) as a
context-sensitive post-process. We demonstrate that the knowledge representations inferred by our
system allows traversal across concepts to characterize meaningful causal influences.

We continue with a review of related work in qualitative causal representations (Section 2.1) and
transformer-based NLP (Section 2.2). We then describe our approach (Section 3) and preliminary
results in two domains (Section 4). We conclude with a discussion of future work in this area.

2. Background and Related Work

We review related work in representing causal relations, which informs the present approach. We
then review previous work in transformer-based NLP, including the SpERT system (Eberts & Ulges,
2020) which is a subsystem of our architecture.

2.1 Qualitative Causal Relations

The knowledge representations described in this paper are motivated by previous work in qualita-
tive reasoning and simulation (Forbus, 2019). For example, gualitative proportionalities describe
how one quantity impacts another, in a directional, monotonic fashion. In this work, we designate
(a,q+,b) (and respectively, (a,q—-, b)) as qualitative proportionalities from a to b, such that in-
creasing a would increase (and respectively, decrease) b. This is motivated by quantity-to-quantity
ag /- relations (Forbus, 1984) and M +/~ relations in qualitative simulation (Kuipers, 1986). Our
semantics are less constrained than either of these, due to tendencies in language to express an in-
crease from an event to a quantity (e.g., “smoking a cigarette will increase your risk of cancer”) or
from entities to activities (e.g., “the prime increased participants’ retrieval of the cue”), and so on.
Previous work in philosophy (Dennett, 1989) and cognitive psychology (Lombrozo & Carey,
2006) has acknowledged intentional (i.e., psychological, goal-based) and teleological (i.e., func-
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Figure 1: SpEAR knowledge graph output for the text “This sex predisposition might be associated with the
much higher smoking rate in men than in women in China.” Includes a correlation, a comparison with a
qualitative increase, magnitudes, and a location qualifier.
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Figure 2: SpEAR knowledge graph output for “Movement restriction greatly reduced the number of infections
from 5 February onwards.” Includes a causal association, a qualitative decrease, a magnitude, and a temporal
qualifier.

tional, design-based) relationships as types of causal relations. Previous work has represented these
as lexical qualia or affordances (Pustejovsky, 1991). In this work, we represent purposeful, inten-
tional actions as a qualitative relationship (a, intent+, b), such that the actor of action @ may have
intended the purpose or goal b, e.g., “they prayed for a safe pregnancy.” We represent teleological
(i.e., functional or design-based) causal relations as (a, function+, b) to indicate that the action or
artifact a is designed or otherwise has a function to achieve b, e.g., “the artifacts provide protection
for pregnant women.”

2.2 Causal and Transformer-Based NLP

Transformer-based methods for NLP utilize neural networks to encode a sequence of textual tokens
(i.e., words or sub-words) into large vector-based representations for each token, sensitive to the
context of the surrounding tokens (Devlin et al., 2019). This is widely regarded as a state-of-the-
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art methodology for NLP, and has been used to process text to extract knowledge graphs, e.g.,
of people and relations (Eberts & Ulges, 2020). The architecture we present in this paper has
been applied to the SciClaim dataset of scientific claims (Magnusson & Friedman, 2021) and a
social media corpus centered on moral attributions and hate speech (Friedman et al., 2021). Many
existing transformer models—similar to the architecture presented in this paper—require hundreds
(sometimes thousands) of labeled training examples to reach high proficiency.

Existing symbolic semantic parsers extract scientific claims and assertions from text with ex-
plicit relational knowledge representations (Allen et al., 2015). Many of these rely on rule-based
engines with hand tuning, which provides more customization and interpretability, at the expense of
using NLP experts to maintain and adapt to new domains. By contrast, our approach extracts causal
knowledge graphs using advances in transformer-based models such as SpERT (Eberts & Ulges,
2020) to learn graph-based representations from examples alone. The resulting knowledge graphs
are ontologically-grounded and support graph-based reasoning, as we demonstrate below; however,
these are not as expressive as some modern symbolic parsers.

Other NLP approaches use machine learning to extract features from scientific texts, e.g., to
identify factors and directions of influence in scientific claims (Mueller & Abdullaev, 2019); how-
ever these approaches do not explicitly infer relations between elements in a causal graph or the
ontological groundings of the terms, as in our approach.

3. Approach

We describe our graph schema for representing the entities, attributes, and qualitative relationships
extracted from text. We discuss the general problem definition and then we explain the specific
graph schemas in two domains: (1) scientific claims and (2) ethnographic mental models.

3.1 Knowledge Graphs

The SpEAR knowledge graph format includes the following three types of elements: entities, at-
tributes, and relations. We describe each of these before defining the problem and describing the
architecture.

Entities. Entities are labeled spans within a textual example. These are the nodes in the knowledge
graph. The same exact span cannot correspond to more than one entity type, but two entity spans
can overlap. Entities comprise the nodes of Figures 1-3 upon which attributes and relations are
asserted. Unlike most ontologically-grounded symbolic parsers (e.g., Das et al., 2010; Allen et al.,
2015), these entity nodes are not ontologically grounded in a class hierarchy; rather, these entity
nodes are associated with a token sequence (e.g., “smoking rate” in Figure 1) and a corresponding
entity class (e.g., Factor). These entities also have high-dimensional vectors from the transformer
model, which approximates the distributed semantics. Our architecture also associates entities with
applicable WordNet senses, as we describe below in Section 3.4.7.

Attributes. Attributes are Boolean labels, and each entity (i.e., graph node) may have zero or
more associated attributes. Attribute inference is therefore a multi-label classification problem. The
previous SpERT transformer model was not capable of expressing these; this is a novel contribution
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of SpEAR, as described in Section 3.4. In Figures 1-3, attributes are rendered as parenthetical
labels inside the nodes, e.g., Correlation and Sign+ in the Figure 1 nodes for “associated with” and
“higher,” respectively. The multi-label nature allows the Figure 1 “higher” node to be categorized
simultaneously as Sign+ and Comparison.

Relations. Relations are directed edges between labeled entities, representing semantic relation-
ships. These are critical for expressing what-goes-with-what over the set of entities. For example in
the sentence in Figure 1, the relations (i.e., edges) indicate that the “higher” association asserts the
antecedent (arg0) “men” against (comp_to) “women” for the consequent (argl) “smoking rate.” In
Figures 1-3, the modifier relations link nodes to others that semantically modify them. Without all
of these labeled relations, the semantic structure of these scientific claims would be ambiguous.

3.2 Problem Definition

We define the multi-attribute knowledge graph extraction task as follows: for a text passage S of n
tokens s, ..., S, and a schema of entity types 7, attribute types 7, and relation types 7., predict:

1. The set of entities (s;, s, t € Tc) € & ranging from tokens s; to s;, where 0 < j < k < n,
2. The set of relations over entities (€neqq € €, €tait € €, € T;) € R where €peqq # €tails
3. The set of attributes over entities (e € £,t € T,) € A.

This defines a directed multi-graph without self-cycles, where each node has zero to |7, | attributes.
SpEAR does not presently populate attributes on relations.

mean IOP
Factor

higher Obese patients
Association (Comparison, Sign+)

Factor

&
non - obese patients

Factor

\\argl/v

Figure 3: SpEAR knowledge graph output for “Obese patients have a higher mean IOP and lower flow
velocity than non-obese patients.” The two qualitative comparisons “higher” and “lower” support qualitative
Sign+ and Sign- attributes, and q+ and q- relations, respectively.

lower flow velocity

Association (Comparison, Sign-) Factor

3.3 Knowledge Graph Schemas

We briefly describe a subset of the graph schemas for our two use-cases: (1) the SciClaim dataset
of scientific claims and (2) ethnographic mental models. These two schemas share some qualitative
causal representations but vary in other domain-specific descriptions. In follow-on work, these
schemas may be integrated into a single schema.
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Scientific Claims. The SciClaim scientific claim schema is designed to capture associations be-
tween factors (e.g., causation, comparison, prediction, proportionality), monotonicity constraints
across factors, epistemic status, and high-level qualifiers. This model is used for qualitative rea-
soning to help characterize the replicability and reproducibility of scientific claims (Alipourfard
et al., 2021; Gelman et al., 2021). We describe the entities, attributes, and relations of the schema,
referencing the graphed examples rendered by our system in Figures 1, 2, and 3.

This schema includes six entity types: Factors are variables that are tested or asserted within a
claim (e.g., “smoking rate” in Figure 1); Associations are explicit phrases associating one or more
factors in a causal, comparative, predictive, or proportional assertion (e.g., “associated with” and
“reduced” in Figures 1 and 2, respectively); Magnitudes are modifiers of an association indicating
its likelihood, strength, or direction (e.g., “might” and “much” in Figure 1); Evidence is an explicit
mention of a study, theory, or methodology supporting an association; Epistemics express the belief
status of an association, often indicating whether something is hypothesized, assumed, or observed;
Qualifiers constrain the applicability or scope of an assertion (e.g., “in China” in Figure 1 and “from
5 February onwards” in Figure 2).

This schema includes the following attributes, all of which apply solely to the Association en-
tities: Causation expresses cause-and-effect over its constituent factors (e.g., “reduced” span in
Figure 2); Comparison expresses an association with a frame of reference, as in the “higher” state-
ment of Figure 1 and the “higher” and “lower” statements of Figure 3; Sign+ expresses high or
increased factor value; Sign- expresses low or decreased factor value; Indicates expresses a predic-
tive relationship; and Test indicates a statistical test employed to test a hypothesis.

We encode six relations: arg0 relates an association to its cause, antecedent, subject, or inde-
pendent variable; argl relates an association to its result or dependent variable; comp_to is a frame
of reference in a comparative association; modifier relates entities to descriptive elements; q+ and
q- indicate positive and negative qualitative proportionality, respectively, where increasing the head
factor increases or decreases (the amount or likelihood of) the tail factor, respectively.

Ethnographic Mental Models. In our preliminary ethnographic mental modeling domain, we
utilize a slightly different schema to capture intentional and functional causality in addition to
culturally-specific attributes such as gender and spirituality. We use Figure 4 and Figure 5 to il-
lustrate the ethnographic causal graph schema.

This schema includes attributes for spiritual or cultural Tradition (e.g., “prayed” in Figure 4),
Event (e.g., “gave” and “drink” in Figure 5), Influence for causally-potent elements (e.g., “prevent”
in Figure 4), and others.

We include additional relations agent, object, recipient, consequent, and others as semantic
role relations of events and assertions. These relations (rendered in narrow lines in Figure 4 and
Figure 5) comprise a description logic of their head nodes, such that the head node would not have
the same semantics without the its reachable subgraph along these edges.

The bold-rendered edges are causal edge, including qualitative monotonicity q+ and q-, tem-
poral precedence t+ relations to indicate one event preceding another, and intentional intent+ and
functional function+ relations to indicate the goal (i.e., intention or function, respectively) of an
action or artifact. For instance, the graph in Figure 4 shows an intent+ from “prayed” to “prevent”
and then a q- to “complications”, ultimately indicating that prayer has a goal of minimizing compli-
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women

Therefore
(Rationale)

prayed
(Event, Tradition)

(Actor, Female)

intent+

prevent

(Influence) complications

(Event)

Figure 4: SpEAR knowledge graph for “Therefore, the women prayed to prevent any complications,” includ-
ing intent+ and - relations.

He
(Actor, Male)

recipient

function+ drink

m (Event, Food/agro)

(Physob)

Figure 5: SpEAR knowledge graph for “He also gave them tombo to drink.”, including intent+ and function+
relations.

cations. Furthermore, the graph in Figure 5 illustrates an intent+ relation from “gave” to “drink,”
indicating the giving is intended to support the drinking. Figure 5 also includes a function+ relation,
indicating that the “tombo” is designed or cultivated for drinking.

The relatively simple statement in Figure 4 originates from an ethnographic article (Aziato et al.,
2016) that includes interview snippets, and the sentence in Figure 5 is from a collection of interna-
tional folktales.! Despite their simplicity, the SpEAR knowledge graphs illustrate rich multi-step
causality: Figure 4 indicates that prayer has the purpose of reducing the incidence (or severity of)
complications, and Figure 5 plots a simple narrative structure indicating an agent’s intention to
affect the actions of other agents, as well as the function of a novel entity.

3.4 Model Architecture

Our SpEAR model architecture extends SpERT with an attribute classifier and attention-based span
representation. The original architecture provides components (Figure 6 a—c) for joint entity and
relation extraction on potentially-overlapping text spans. The parameters of the entity, attribute,
and relation classifiers, as well as the parameters of the BERT language model (initialized with its
pre-trained values) are all trained end-to-end on our dataset.

1. https://www.worldoftales.com/
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Figure 6: The SpEAR transformer-based model extends the SpERT components (a, b, and c) with attribute
classification (d) that performs multi-label inference on identified entity spans and attention-based represen-
tations (e) of spans, inspired by Lee et al. (2017).

3.4.1 Computing Token Vectors

The tokens s1, ..., s, of the text passage S are each embedded by a transformer such as BERT
(Devlin et al., 2019) as a sequence ey, ..., e, of high-dimensional vectors representing the token
and its context. BERT also provides an additional “[CLS]” vector output, ey, designed to represent
information from the complete text input. For all possible spans, span; = s;, ..., i, up to a given
length, the word vectors associated with a span, e;, ..., e, are combined into a final span vector,

e(span; ).
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3.4.2 Computing Span Vectors

The original SpERT architecture uses maxpooling to compute each dimension of e(span; ;) as the
maximum value across its constituent BERT token vectors for that dimension. Instead of using
maxpool, SpEAR uses an attention-based span representation (Figure 6e) inspired by Lee et al.
(2017) to compute span vectors. This produces attention weight scalars c;; for each BERT token
vector h; in a span ¢ using learned parameters w and b:

B exp(w - hy +b)
it = END()
k=START(1)

(D
exp(w - hy + b)

These attention weights help compute the span representation h; with the following weighted sum:

END(i)

b= ) aihy )

t=START(1)

3.4.3 Classifying Spans as Entities

The final attention-based span representation, X(span ;) is made by concatenating together the at-
tention representation e(span; ;) and ey along with a width embedding, w;, that encodes the number
of words, [, in span; . Each valid span length [ looks up a different vector of learned parameters,
w;. SpEAR uses the concatenated X(span; i) vector to classify spans into mutually-exclusive entity
types (including a null type) using a linear classifier (Figure 6a). Only spans identified as entities
move on to further analysis (Figure 6b).

3.4.4 Inferring Multi-Class Attributes on Entities

SpEAR uses its classified entities x® as inputs to its attribute classifier (Figure 6d) with weights W¢
and bias b?®. A pointwise sigmoid o yields separate confidence scores §¢ for each attribute in the
graph schema:

¥4 =o(W%* + b?) 3)

We train the attribute classifier with a binary cross entropy loss £, summed with the SpERT entity
and relation losses, L. and L., for a joint loss:

L=L.+ L, + L, “4)

SpEAR takes only identified entity spans as input to the attribute classifier, as this approach
provided best performance and aligns with the finding by Eberts & Ulges (2020) that training on
downstream tasks yields best accuracy with strong negative samples of ground truth entities (i.e.,
teacher forcing).
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3.4.5 Inferring Labeled Relations between Entities

SpEAR uses all pairings of classified entities (Figure 6b) as inputs to its relational classifier (Fig-
ure 6¢). SpEAR’s relational classifier identical to SpERT’s: a multi-label linear classifier that takes
each pair of entities (i.e., a relation head and a relation tail) and concatenates their span represen-
tations, width representations, and also the maxpool of the token vectors between the two entities.
The output of the relational classifier is zero or more labeled relations from the head entity to the
tail entity.

The output of SpEAR’s neural components comprises a directed multigraph (i.e., a directed
graph that is allowed to have multiple edges between any two nodes) without self-loops. The multi-
graph may be disconnected, and may contain isolated nodes. Each node (i.e., labeled entity) in
the multigraph may have zero or more Boolean attributes. Every entity, attribute, and relation in
SpEAR’s directed multigraphs includes a confidence score between 0 and 1.

3.4.6 Rectifying Results

SpEAR includes a novel rectifier component (not shown in Figure 6) that prunes entities, attributes,
and relations that are inconsistent with the constraints of the graph schema. For example, relations
might be constrained to originate or terminate at certain entity types, attributes may be constrained
to certain entity types, and some attributes and relations may be mutually inconsistent.

When the rectifier detects a schema conflict, it uses SpEAR’s confidence scores to remove lower-
score elements to resolve it. This strictly removes graph elements, so it cannot improve SpEAR’s
recall score— and it may even reduce the recall score— but empirically, we find the rectifier in-
creases precision proportionately and ultimately increases SpEAR’s F1 measure in some domains.

women
(actor, female)

0.62 woman.n.01: an adult female ...
prayed

(event, tradition)
0.72 pray.v.01: address a deity,...

0.57 gravida.n.02: a pregnant woman

0.57 maenad.n.02: (Greek mythology...
0.57 judith.n.01: Jewish heroine i...

prevent

Therefore (influence)

0.62 prayer.n.01: the act of commu...

(rationale) 0.75 prevent.v.01: keep from happen...

O LB (e i e 0.62 prevention.n.01: the act of preve...

0.6 hold.v.28: keep from depart...
0.59 debar.v.02: prevent the occu...

complications

0.61 entreaty.n.01: earnest or urgen...
(event)

0.6 prayer.n.04: a fixed text use...
0.51 complication.n.01: the act or proce...

0.56 averting.n.01: the act of preve...

Figure 7: SpEAR knowledge graph for the same sentence in Figure 4, also displaying WordNet word senses
automatically inferred by the architecture. The listed word senses include a confidence score, the WordNet
SynSet name, and a truncated WordNet definition for the inferred SynSet.

3.4.7 Inferring Word Sense

After extracting the graph structure, our system infers a confidence distribution over word senses for
each applicable node in the SpEAR graph, ignoring some pronouns, prepositions, determiners, and
logical connectives. Figure 7 illustrates the output of word sense disambiguation from our system,
listing all inferred word senses with a confidence score greater than 0.5. We do not interpret the

10
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highest-confidence word sense as the single “correct” word sense; rather, we regard each node as
having a weighted semantic locale within a lexical ontology.

Word senses are inferred using the LMMS framework (Loureiro & Jorge, 2019): a transformer-
based encoder encodes a vector for each token of the sentence. Vectors for SpEAR nodes are
computed by averaging the one or more constituent token vectors. The system then computes the
dot-product of each node’s vector against pre-computed vectors for each word sense within its sense
embeddings. The dot-product results are utilized as confidence scores.

The word sense embeddings are drawn from the SynSets (i.e., synonym sets) of WordNet, a
large knowledge base containing over 117,000 word senses (Fellbaum, 2010). Computing a confi-
dence distribution of WordNet word senses localizes each SpEAR node within a structured semantic
hierarchy. This ultimately facilitates similarity-based reasoning within and across SpEAR graphs,
e.g., by computing the least common ancestor between two different nodes within the WordNet
semantic hierarchy. These word senses are not evaluated in this paper due to lack of ground truth
WordNet labels for our datasets, but word sense disambiguation is an important cognitive capability
for natural language understanding, and is facilitated by the same transformer-based NLP as the rest
of the architecture.

Dimension P R F1 Support

factor  93.05 90.68 91.85 2756
evidence  92.17 92.00 92.04 230

,§ epistemic ~ 91.57  73.04 81.09 299
':E association  94.60 86.83 90.54 1290
= magnitude  88.19  86.76 87.46 613
qualifier  78.21  78.75 78.41 360
Micro-Averaged 91.56 87.71 89.59
causation  44.64  68.00 53.85 342
comparison 9247  77.87 84.49 329
§ indicates  85.38  70.00 76.73 84
2 sign+ 9798 8697 92.13 542
g sign-  90.22  72.14 80.13 202
< correlation  100.00 83.73 91.14 320
test - - - 25
Micro-Averaged 93.85 81.23 87.08
arg0 84.84 7584 80.08 1325
argl 84.74  76.69 80.50 1384
2 comp_to 77.92 59.20 67.27 187
£ modifier  80.73  74.67 7757 1582
é subtype  43.33  33.33 37.33 156

q+ 7204 6873 70.32 504
q- 7594 54.00 62.50 208
Micro-Averaged 81.37 73.37 77.16

Table 1: Precision, recall, F1 and support (i.e., occurrences in dataset) for SpEAR on the SciClaim dataset,
using 100 held-out examples from the total 901 examples in the dataset.

11
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4. Results

We describe two different results of using SpEAR with our qualitative causal schemata: (1) preci-
sion, recall, and F1 measure in the SciClaim scientific claims domain and (2) traversal through an
ethnographic qualitative causal model. This provides empirical evidence of the effectiveness of our
approach and the expressiveness of the qualitative causal schema, respectively.

4.1 Information Extraction for Scientific Claims

The SciClaim dataset for the scientific claims domain consists of 901 examples from Social and
Behavior Science (SBS) literature and abstracts from PubMed and the CORD-19 dataset (Wang
et al., 2020). Each example consists of a single sentence labeled by a trained NLP expert with one
or more spans (possibly nested) identified as entities, zero or more attributes on each entity, and
zero or more relations over entities pairs (label counts are listed in Table 1 support). Most datasets
for transformer-based information extraction are an order of magnitude larger.

When applying SpEAR to the SciClaim dataset of scientific claims, we use the fine-tuned SciB-
ERT transformer variant Beltagy et al. (2019) as the SpEAR input layer.

We partitioned the SciClaim dataset into a randomized split of 100 test examples and 801 train-
ing examples, and we averaged our results over 5 train/test evaluation trials. In each trial, we
trained our SpEAR model for 20 epochs and then ran our evaluation. The per-class evaluations are
listed in Table 1, divided across the various entities, attributes, and relations. Table 1 reports the
micro-averaged results for entities, attributes, and relations, as well as support numbers to show the
cardinality of each element in the full 901-example SciClaim dataset. Despite the relatively small
size of the SciClaim dataset, the model achieves promising results on most classes. Our random
train-test split included no examples of the Test attribute (which describe mentions of “ANOVA,”
“t-test,” and other experimental methods), so Table 1 contains no results for that row.

Importantly, the relations and attributes cannot be correct if the entities they are defined over
are incorrect. This means that we expect relations and attributes to have lower precision and recall,
all else being equal. This is especially the case for relations, which require both of their constituent
entities (i.e., head and tail nodes) to be properly characterized in order to be scored as correct. The
relations q+ and - achieved relatively low performance, due in part to the lower support in the
training data, and also due to the often greater distance between these spans in the text, all else
being equal.

These results across entities, attributes, and relations support our claim that qualitative causal
structure can be characterized by context-sensitive NLP models.

4.2 Extracting and Traversing Ethnography-Derived Causal Models

In the ethnographic domain, we trained SpEAR on labeled examples from Anthropology papers,
ethnographic manuscripts, and tweets, all related to the topic of maternal and child health in western
African countries. We then ran SpEAR to extract information from these and other sentences from
the same types of literature.

This ethnographic dataset is roughly half the size of the SciClaim dataset, so rather than pro-
vide another table of F1 scores, we demonstrate the reasoning capabilities supported by the NLP-
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modifier
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valence+ actor, female

women

actor, femal

pregnancy
event, health

modifier

Figure 8: Knowledge graph in the ethnography schema with valence inferred, for the text “Some of the

women prayed for themselves during pregnancy for safe delivery.”
famil
Please Y .
. actor, domestic
prescribed negated

Figure 9: Knowledge graph in the ethnography schema with valence inferred, for the text “Please don’t
disgrace the man of the family again.”

don't

extracted causal structure. The preliminary results in Section 4.2.1 and Section 4.2.2 include
both SpEAR-extracted and human-labeled (i.e., ground truth) data, so we consider this a proof-
of-concept study of the ability to reason over the causal models extracted by SpEAR.

4.2.1 Computing Valence via Intentions and Qualitative Monotonicity

In the ethnographic domain, the causal models in our schema (and therefore extracted by our model
SpEAR) include intention (intent+) and function (function+) relations, which indicate an agent-
based desire or normative effect of an action or artifact.

These relations indicate an agent-based or normative valence (i.e., the positive or negative de-
sirability) of an agent to achieve (or maximize) or prevent (or minimize) an event or quantity. Our
graph schema also includes a prescribed attribute for occurrences of “should” and “must” and
“please” that indicate a request or positive valence on behalf of the author or speaker, and a negated
attribute for occurrences of “don’t” and “not” and other negations to indicate a negation of the
node’s reachable subgraph. These intentional, functional, prescribed, and negated structure in the
graph support graph-based inference of agents’ valence.

13



S. FRIEDMAN, I. MAGNUSSON, V. SARATHY, AND S. SCHMER-GALUNDER

antecedent

valence-

object

influence event

prayed
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Figure 10: Knowledge graph in the ethnography schema with valence inferred, for the text “...the witches had
planned to terminate my pregnancy, so the pastor prayed to prevent it.”

Valence computation starts at any intent+ or prescribed source node, and then traverses for-
ward, asserting that the agent (or otherwise a generic prescribed element) has a positive valence for
that node. When a negated attribute or q- relation is traversed, the sign of the valence is inverted.

In Figure 8, the traversal computes that women have positive valence for “prayed” (their direct
action) and “themselves” (which they pray for) and “safe delivery” (which they also pray for).
In Figure 9, the speaker prescribes the negation of an event, so the traversal asserts a normative
negative valence for the disgracing the man of the family. Figure 10 is the most complex of these
SpEAR semantic graphs, describing a pastor praying to prevent some witches’ plan to terminate a
pregnancy. The traversal infers that the pastor and the witches have opposite valences toward the
plan, the pregnancy termination, and the pregnancy itself.

These simple traversals over complex SpEAR graphs can help us infer the norms and heteroge-
neous values of actors across cultures, from unstructured text.

4.2.2 Finding Contextual Associations in Ethnographic Causal Models

In addition to analyzing the ethnographic models on a per-sentence basis (see above), we assemble
them into a global graph comprising the SpEAR graphs from each sentence from the ethnographic
corpus. We implemented a simple query function that records the semantic paths between a start
and end patterns, where the pattern could bind a node’s lemma (e.g., “baby”) or bind multi-node
semantic graph structure, e.g., any Event with lemma “eat” whose agent has lemma “woman.” The
SpEAR nodes traversed from the query (from start to end patterns) comprise the set of relevant
causal factors and relationships.

In the case of the Figure 11 traversal, the query begins at any “eat”-lemma event performed
by a mother or woman, and terminates at a “baby”-lemma node. Intuitively, this queries how the
mother’s eating might affect a baby, and Figure 11 iterates through eating “sugarcane” q+ to a baby’s
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Figure 11: A graph traversal from the concept “eat” with an agent of lemma “woman” or “mother” to the
concept “baby” after parsing a manuscript listing common myths about maternal and child health.

“stomachaches,” through eating “eggs” q+ to a baby being “sick,” through eating “mango” q+ to
both “red bottom” and “diarrhea,” etc. Note that the dietary effects extracted and traversed here are
not supported by scientific evidence; rather, they are common beliefs in the regions described in
the ethnography. This query-driven traversal capability provides further evidence that the SpEAR
causal models support practical qualitative causal reasoning.
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5. Conclusion

This paper describes our SpEAR transformer-based NLP model for extracting entities, attributes,
and relationships that describe qualitative causal structure. We demonstrated the approach in the
domains of (1) the SciClaim dataset of scientific claims and (2) ethnographic corpora. Our datasets
are still under development, but despite their relative sparsity they support encouraging results with
respect to Fl1-measure and practical reasoning capabilities via graph traversal.

One limitation of this work is that not all of the nodes generated by our approach are formally
represented to support qualitative and numerical model-based reasoning. This is due in part to
the ambiguity and hedging that we see in causal language: “smoking is associated with increased
risk of lung disease” does not unambiguously specify whether we should model “smoking” as a
frequency, likelihood, or single occurrence, nor does it unambiguously specify whether the risk of
disease increases in likelihood or severity. The incompleteness in language—and the resulting gaps
in knowledge representation—mean that some assumptions about the arguments to q+ and - may
not hold in SpEAR’s output: q+ may be expressed over quantities, over events, over adjectives,
or any heterogeneous mix of these, and a downstream reasoner has no formal a priori indicator of
which these are. One remedy to this is for the NLP model to infer whether nodes are amounts,
frequencies, likelihoods, etc., but it’s an empirical question whether transformer-based NLP model
can accurately infer these abstract categories, and it’s not clear whether NLP models should attempt
such inferences when the author has left it ambiguous.

Our graph traversal results suggest that the present level of representation may be adequate for
use cases involving causal reasoning, graph propagation, and inferring agents’ direct and indirect
goals and intentions. These are important considerations for cognitive systems that reason in scien-
tific, causal, or social domains.

As with many modern NLP architectures, the work presented in this paper utilizes a pre-trained
transformer model within its architecture. Pre-trained transformers are trained on massive corpora
collected from across the internet and other sources, which speeds up subsequent machine learning,
but it also means that the sub-optimal biases of the training data—including racial, ethnic, gender,
and other biases—become part of the models themselves. Systematic biases in pre-trained models
have been well-characterized (Garg et al., 2018; Friedman et al., 2019), as have methods for de-
biasing them (Bolukbasi et al., 2016); however, we note that sub-optimal biases remain a risk for
any machine-learned model trained on real-world text that itself contains implicit biases.

Our near-term future work is to expand our ethnographic dataset and to utilize SpEAR’s results
in downstream systems, e.g., for estimating the reproducibility of a scientific claim, automatically
organizing and combining insights from academic literature, and globally traversing descriptive
mental models to identify culture-specific, causally-potent concepts and purposes.
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