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Abstract
Affordance perception refers to the ability of an agent to extract meaning and usefulness of objects
in its environment. Cognitive affordance is a richer notion that extends traditional aspects of object
functionality and action possibilities by incorporating the influence of changing context, social
norms, historical precedence, and uncertainty. This allows for an increased flexibility with which
to reason about affordances in a situated manner. Existing work in cognitive affordances, while
providing the theoretical basis for representation and inference, does not describe how they can
be (a) learned, and (b) integrated and used with a robotic system. In this work, we describe,
demonstrate and evaluate an integrated cognitive robotic architecture which can learn cognitive
affordances for objects from natural language and immediately use this knowledge in a dialogue-
based learning and instruction task.

1. Introduction

Using and manipulating objects in the environment requires a cognitive ability to perceive and
evaluate their meaning, applicability and usefulness in relation to our own abilities to take action.
Such a relational notion, known as an affordance, links action and behavior possibilities with ob-
jects and features present in the environment, enabling the ability to guide our behavior (Gibson,
1979; Zech et al., 2017). In robotics and AI, affordances have served as the underlying theory for
action perception and have been modeled using relational and machine learning techniques such
as Bayesian Networks, Markov-Logic Networks, Conditional Random Fields, and Reinforcement
Learning (Steedman, 2002; Montesano et al., 2007; Ugur et al., 2015; Koppula & Saxena, 2016;
Sridharan & Meadows, 2017). While much of the affordance literature in robotics has focused on
object or environmental affordances, some have considered “social affordances” and offered an ap-
proach to perceiving visual cues offered by social scenarios involving other agents (e.g., raised arm
signaling a high-fiving affordance) (Shu et al., 2016). However, these methods do not allow for
socio-contextual dependency on object affordances.

Sarathy & Scheutz (2016, 2018) proposed the theory of cognitive affordances to address this
problem. The theory of cognitive affordances uses a probabilistic-logic based approach capable of
inferring affordances in the face of changing contexts, social norms, and epistemic uncertainty, i.e.,

Draft: Do not distribute.



V. SARATHY, B. OOSTERVELD, E. KRAUSE AND M. SCHEUTZ

it accounts for those object affordances influenced by factors beyond perceptual cues on the objects
themselves (“cognitive affordances”). However, the question of how exactly to learn these cognitive
affordances and utilize them on a robot is still open. The problem is especially difficult because
these sorts of socio-contextual dependencies are, for humans, learned through a few exposures or
instructions, and not through numerous trials and errors.

In this paper, we address these open questions directly and propose two novel contributions:
(1) a grounding and integration of cognitive affordance representation within a cognitive robotic
architecture, and (2) an approach to learning these cognitive affordances from natural language
instruction in the presence of epistemic uncertainty. The proposed approach allows for encoding,
learning and immediately actualizing of a broad class of normatively-charged cognitive affordances,
accounting for aspects of objects that the agent can directly perceive (e.g., object features) and
aspects that are not self-evident or directly perceivable from the object itself (e.g., context and
social convention associated with the object, goals of the agent).

We will use a kitchen-helper robot from Sarathy & Scheutz (2018) as our running example, with
the robot learning, from instruction, how to properly grasp a knife when using it and when handing
it over to someone (at the blade). Although the proposed approach is not limited to this particular
example, or even embodied robotic systems for that matter, a concrete example of this sort will help
tie it to past work and explain various aspects of the representation, inference algorithm, learning
approaches and integration with a cognitive robotic architecture, to allow for normative behavior
capabilities.

2. Theoretical Aspects of Cognitive Affordances

We are interested in the class of affordances that possess additional properties and dimensions be-
yond the simple Gibsonian notions (e.g., “sitability of a chair”). As noted earlier, this class of
cognitive affordances is deeply influenced by contextual and normative factors including goals and
intentions, prior knowledge and interpretations, ensemble scene information, mental state, experi-
ence and developmental state, social and moral conventions, and aesthetic considerations among
others. We will build on a recent theoretical model of cognitive affordances proposed by Sarathy &
Scheutz (2016, 2018) that represents affordances as condition-action rules (R) where the left-hand
sides represent perceptual invariants (F ) in the environment together with contextual information
(C), and the right-hand sides represent affordances (A) actualizable by the agent in the situation
(e.g., the rule that one should grab a knife by the handle when using it would be translated by spec-
ifying the grasping parameters as F , the task context of “using a knife” as C and the constrained
grasping location together with other action parameters as A). Affordance rules (R) take the overall
form r

def
= f∧c =⇒

[α,β]
a, with f ∈ F , c ∈ C, a ∈ A, r ∈ R, and [α, β] ⊆ [0, 1]. [α, β] is a confidence

interval intended to capture the uncertainty associated with the truth of the affordance rule r such
that if α = β = 1 the rule is logically true, while α = 0 and β = 1 assign maximum uncertainty
to the rule. Similarly, each of the variables f and c also have confidence intervals associated with
them, and are used for inferring affordances as described in more detail below. Thus, rules can then
be applied for a given feature percept f in given context c to obtain the implied affordance a under
uncertainty about f , c, and the extent to which they imply the presence of a.

2



LEARNING COGNITIVE AFFORDANCES

Given a set of affordance rules, we can determine the subset of applicable rules by matching
their left-hand sides given the current context and perceivable objects in the environment together
with their confidence intervals, and then determine the confidences on the fused right-hand sides
(in case there are multiple rules with the same right-hand side) based on the inference and fusion
algorithm in Sarathy & Scheutz (2018). We will use the “confidence measure” λ defined by Nunez
et al. (2013) to determine whether an inferred affordance should be realized and acted upon. For
example, we could check the confidence of each affordance on its uncertainty interval [αi, βi]:
if λ(αi, βi) ≤ Λ(c) (where Λ(c) is an confidence threshold, possibly depending on context c),
we do not have enough information to confidently accept the set of inferred affordances and can
thus not confidently use the affordances to guide action. However, even in this case, it might be
possible to pass on the most likely candidates to other parts of the integrated system. Conversely,
if λ(αi, βi) > Λ(c), then we take the inferred affordance to be certain enough to use it for further
processing.

From a systems standpoint, in order to process cognitive affordances, several functional units
were proposed by Sarathy & Scheutz (2018). During inference, the functional units are meant to
search through all available affordance rules of the form specified above in the agent’s long term
memory and populate a working memory with the relevant rules. Once the rules are in the working
memory, the system can use these rules as the basis for perception and inference. An example
cognitive affordance rule instantiation in this past work had the form,

r
def
= hasSharpEdge(O) ∧ domain(X, kitchen) =⇒

[0.8,1]
cutWith(X,O).

While this past work presented some crucial early theoretical foundations for using and perform-
ing inference with cognitive affordances, it was missing two key components. First, the past work
did not suggest how these rules could could be grounded in a robotic system. For example, Sarathy
& Scheutz (2018) state that the results from affordance inference are “passed to the robot’s action
management system,” but they do not discuss how exactly this interaction might work and how an
action management system might be able to use this information in connection with its own action
repetoire and action knowledge. Thus, an open question is how can an agent use cutWith(X,O),
and what exactly do the predicates and variables in the logical representation mean in a robotic
architecture. In this paper, we describe such a grounding for an exemplary architecture and pro-
vide a grounded rule representation consistent with the cognitive affordance theory, but also tightly
integrated with the robot’s actuation and perceptual systems. In doing so, we will also need to re-
visit and modify the above-mentioned cognitive affordance rule example to tie the predicates in the
rule representation to perceptual and action knowledge actually available in the system as well as
contextual knowledge associated with the task the agent is performing.

Moreover, while Sarathy & Scheutz have outlined an approach for performing inference with
cognitive affordance rules, it is still an open problem as to how these rules might be learned. Here,
we propose a solution based on learning from instruction, which at times, might be the only option
available to an agent, for example, in situations where the agent does not have enough time to
observe or if the agent is not able to collect enough observational data. Recent work by Scheutz
et al. discusses an approach for learning percepts and actions from instruction (Scheutz et al., 2017).
Here, we propose extending this approach for learning not only perceptual and action predicates,
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but the rules themselves. By combining these ideas from past work, we provide a novel approach
for learning normatively-guided affordances from natural language.

3. Grounding and Learning

To choose and manipulate everyday objects in socially-appropriate and context-dependent ways,
we claim that any cognitive system will require mechanisms for learning, representing and immedi-
ately applying arbitrary socio-contextual rules associated with these objects. While the cognitive
affordance theory provides a suitable rule representation, the rules must be grounded within the cog-
nitive system (Section 3.1). Action management components must be able to guide perceptual and
action components to check if a rule applies, and then apply the rule by constraining action choices
and parameters, all under conditions of epistemic uncertainty (Section 3.3). Moreover, much of
these social norms are conveyed via natural language. So the natural language components must be
equipped to parse speech into the grounded rule representations (Section 3.2).

3.1 Enabling Affordance Processing in a Cognitive Robotic Architecture

To integrate affordance processing into a cognitive robotic architecture, we developed a separate
component for maintaining the affordance rules and the inference algorithm for DIARC, an example
architecture (Scheutz et al., 2007). In addition we updated several components of the architecture
to be able to handle the new types of information enabled by the new affordance component. This
grounding within the architecture gives the affordance reasoning mechanisms described in Section 2
a concrete medium through which new rules can be added dynamically based on an agent’s interac-
tions with its environment. This extends the functionality and utility of the theoretical model which
previously was limited to a fixed set of abstract rules.

We selected DIARC over other cognitive robotic architectures (e.g., SOAR (Laird et al., 1987),
ACT-R (Anderson et al., 2004)) because of its integration of social behaviors, and specifically its
natural language understanding and production capabilities which allow for more natural human-
robot interaction, as well as the ability to lean new concepts through natural language (Scheutz
et al., 2017). None of the current cognitive robotic architectures (including DIARC) are currently
able to represent and reason about cognitive affordances.

So regardless of the choice of architecture, an affordance component of the type described here
could be desirable to enable affordance processing and enhanced social interaction capabilities.
Whichever architecture is chosen, the proposed affordance component will still need to be connected
to other high and low level components in order to be able to influence perception and action.

Fig. 1 depicts the integration of the affordance component (AFF or AFFORDANCE) in DIARC.
The subcomponents of AFFORDANCE work closely with sensory and perceptual systems (e.g., vi-
sion system) and other components in the architecture to coordinate perceptual and action process-
ing. AFFORDANCE is connected to the goal management component (GM/AM or GOAL MANAGER),
and during the execution of actions GOAL MANAGER sends affordance requests to AFFORDANCE.
These requests provide information about the current action to be performed and the context. AF-
FORDANCE returns the specific perceptual features that need to be searched in the environment.
This allows GOAL MANAGER to direct the attention of low-level perceptual systems like the vision

4



LEARNING COGNITIVE AFFORDANCES

Figure 1. Architecture diagram. Affordance Component AFF highlighted. Other relevant components:
Speech Recognition ASR, Natural Language Understanding NLU, Dialogue Manager DLG, Natural Language
Generation NLG, and Speech Synthesis SS, Belief Model BEL, Motion Control MOTION, Vision VISION, and
Goal Manager/Action Manager GM/AM. During operation, AFF receives semantic information, uses GM/AM
to direct VISION to look for environmental features relevant to social norms, and then guides MOTION via GM
to perform a socially-appropriate action.

system (VISION) to perform searches in a focused manner, only looking for perceptual features rel-
evant to the applicable rules in AFFORDANCE. The presence or absence of the searched perceptual
features (along with perceptual uncertainty information) is passed back to AFFORDANCE, which
subsequently performs uncertain logical inferences (logical AND and modus ponens) on the rules.

In dialogue-driven tasks, GOAL MANAGER receives language based goals via the natural lan-
guage pipeline (ASR → NLU → DIALOGUE), while the belief component (BEL or BELIEF) is the
recipient of language-based knowledge. BELIEF maintains a history of all declarative knowledge
passing through the architecture and is capable of performing various logically-driven knowledge-
representation and inference tasks. Thus, it serves as a convenient holding-area for cognitive af-
fordance information partially processed through the natural language pipeline, which can then be
retrieved and processed by AFFORDANCE.

Integrating AFFORDANCE into DIARC, or any cognitive architecture for that matter, requires
more than simply depositing it into the system. Various other components (GOAL MANAGER, VI-
SION, BELIEF, etc.) must also be modified so they can provide the additional capabilities required
for cognitive affordance processing. For example, the natural language pipeline must be updated
to allow for the recognition and understanding of cognitive affordance related words ("cutting",
sitting","enclosing", etc.), and GOAL MANAGER must be updated to recognize these semantic rep-
resentations and consult AFFORDANCE at the appropriate points in action selection and execution.
In the next sections, we will discuss in more detail the specific architectural modifications, and their
resulting functionality which enables these new operations.

As an additional benefit, these modifications provide the architecture with the new ability to un-
derstand references to objects by their affordance (e.g., a knife as not just an object with some visual
property, but as an “object used for cutting”). An affordance-enabled cognitive robotic architecture
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also allows an agent to account for context, and helps constrain and guide behavior. Actions no
longer need to be performed the same way each time, but can vary depending on context (grasping
a knife can be done differently depending on what the context requires). For example a kitchen
helper robot may grab a knife differently if the context of the grab is that the robot will use it to cut
something, as opposed to the robot grabbing it so it can be handed to a human. Or it might carry
plates of food differently in the context of serving them versus the context of busing a table.

3.2 Learning Affordance Rules from Instruction

As mentioned earlier, we will use as our simple guiding example of the instructions “a knife is often
used for cutting” and “to pickup a knife grab it by the handle” given to a robot that does not know an
epistemically uncertain (“often”) functional affordance (“cutting”) of a knife, or its context-sensitive
(“pick up”) grasp affordance (“by the handle”).

We previously outlined how the affordance model described in Section 2 can be integrated into
a cognitive robotic architecture to expand the capabilities of the robot. This integration also gives
that model a mechanism through which new rules can be added on the fly, allowing it to better
adapt to and represent real world scenarios. In order to do this, various DIARC components must
be extended. Natural language utterances that contain cognitive affordance rules must be converted
to general purpose facts stored in BELIEF, and then used by AFFORDANCE to generate the rules
described in Section 2, which can then ultimately be used to perform uncertain logical inference.
With these extensions to existing DIARC components we are able to leverage DIARC’s mechanisms
for learning through instruction (e.g. Scheutz et al., 2017) to enable learning new affordance rules
about concepts that the agent already understands as well as completely novel concepts which have
been learned on the fly.

The role of the Natural Language Understanding component is converting the text form of spo-
ken utterances into a semantic form which can be understood (used) by the other components within
DIARC. We extended this component through the addition of new parsing and pragmatic inference
rules which enable the generation of new semantic forms.

In order to learn from natural language instructions, a cognitive robotic architecture must be
able to ground the content of the utterances containing the instructions in terms that it is able to
understand. AFFORDANCE understands affordance rule descriptions which are represented in the
predicate form,

implies(antecedents, consequents, confidence),

where the predicate’s arguments represent the antecedents, consequents, and confidence interval of
an affordance rule. The natural language processing components of DIARC (See Figure 1 for ASR,
NLU, DM) convert spoken language into a predicate of this form and assert it into BELIEF.

When an utterance is spoken to the agent, the speech recognition component (ASR) converts the
acoustic speech signals to text. The natural language understanding component (NLU) receives the
utterance in text form from the speech recognition component and performs two steps of processing.
The first step parses the text into a form that can be used by the rest of the system. The second
performs pragmatic inference to add a notion of the speaker’s intent to the representation of the
utterance (Scheutz et al., 2013).
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In the parsing step, the natural language understanding component uses a parser to determine
the syntactic structure and the semantic interpretation of the utterance. The parser used in this
configuration of DIARC is an extended incremental version of the Combinatory Categorial Grammar
(CCG) parser from Dzifcak et al. (2009), described in more depth by Scheutz et al. (2017). It
contains a dictionary of parsing rules each composed of three parts: a lexical entry, a syntactic
definition in CCG, and a semantic definition in lambda calculus. An example set of rules can be
found in Table 1. These rules are a subset of the complete set of rules used by the system. They are
selected because of their relevance to the empirical demonstration in Section 4.

Table 1. A subset of the relevant rules used by the natural language understanding component (NLU).
Label Syntax Semantics
to (S/C)/C λxλy.implies(x, y, high)
pickup C/NP λx.pickUp(?ACTOR, x)
a NP/N λx.x
knife N knife
grasp C/NP λx.grasp(?ACTOR, x)
the NP/N λx.x
by (NP/NP)\NP λxλy.partOf(x, y)
handle N handle

An example of a cognitive affordance rule spoken in natural language and its accompanying
semantics are,

“To pickup a knife grab it by the handle”,

STATEMENT (Sam,self ,implies(pickUp(self , knife),

graspObject(self , partOf (handle, knife)), high)).

Here, “Sam” is the name of the human (and trusted source) speaking to the robot. This rep-
resentation denotes a statement from Sam to the agent whose semantics are the implies predicate,
above.

The parsing step produces a notion of the meaning of the spoken utterance. The pragmatic
inference step uses that meaning and a set of inference rules to determine the speaker’s intention.
The pragmatic inference system used in our configuration of DIARC is described in work by Scheutz
et al. (2013). In the case of our working example the semantic representation generated in the
parsing step matches the left hand side of the rule,

STATEMENT (A,B ,X ) =⇒ wantBelieve(A,B ,X ),

which is a general rule for utterances of the type STATEMENT, and can be interpreted as “when a
person tells an agent something it wants the agent to believe it”. The resulting DIARC representation
produced by the natural language understanding component (NLU) is the predicate,

wantBelieve(Sam,self ,implies(pickUp(self , knife),

graspObject(self , partOf (handle, knife)), high)).
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This semantic representation from NLU is received by DIALOGUE whose role is to appropriately
respond to utterances from other agents. In the case of our example DLG recognizes that Sam wants
the agent believe a predicate. It checks if Sam is a trusted source of information, and if so, asserts
the predicate into BELIEF. Upon confirmation that the information has been successfully stored,
DIALOGUE submits a goal to GOAL MANAGER to verbally acknowledge understanding.

Once the information from the utterance has been asserted into BELIEF it is accessible to AF-
FORDANCE. Epistemically, an utterance is a piece of evidence received by the agent in support of
the truth of the affordance rule it represents. Thus, we use the confidence directly to represent the
degree of support for the rule.1 The confidence value may be used to capture the inherent uncer-
tainty in the utterance (e.g., when qualifiers such as “sometimes” or “maybe” are used), or the trust
placed in the interlocutor (e.g., a rule taught by a superior or boss may hold more water), or the un-
certainty in speech detection mechanisms, or in some combination of these factors. The linguistic
placeholder “high” represents a preset confidence (0.95). That value is used because the speaker
is a priori known to be trustworthy by the agent, but nothing in our system requires this particular,
method of assigning confidence values.

Functional affordances can be learned in the same way as the action affordance describe above.
For example, the utterance “A knife is sometimes used for cutting” would be translated to the DIARC

predicate representation implies(knife, cutting ,mediumLow) in BELIEF.
Scheutz et al. (2017) describes how DIARC agents can learn new concepts on the fly through

natural language instruction. When the agent encounters an unknown word it is able to infer its
syntax and semantics based on the parser’s knowledge about the syntax and semantics. In the case
of utterances related to cognitive affordance inference rules, the syntax and semantics of previously
unknown antecedents or consequents can be inferred by recognizing the pattern of the rest of the
utterance. Novel consequents or antecedents introduced this way can be recognized in subsequent
utterances and their representation in the set of rules in AFFORDANCE will be consistent. This
enables the agent to understand cognitive affordance rules with previously unknown consequents
and antecedents, which provides the agent the ability to continuously adapt its knowledge base.

To clarify it is worth noting that the architecture proposed by Scheutz et al. was limited to
learning concepts that have direct perceptual correlates (speech signals or visual attributes), and was
not able to learn and utilize non-perceptual or cognitive concepts (like cognitive affordances). These
involve non-perceivable attributes (contexts), and relationships between agent capabilities (actions)
and perceptual entities (visual features) all tied together in compact natural language utterances. In
the next section, we describe how an agent having learned cognitive affordance rules can apply this
knowledge immediately in a command-based task.

1. The “confidence” here is different from the confidence measure λ discussed in Section 2. λ is a singular measure
of the degree of uncertainty of an uncertainty interval (somewhat akin to the width of the interval) typically used in
conjunction with Dempster-Shafer theory of uncertainty. We can use λ when executing affordance-based commands
(Section 3.3) and deciding which action to perform when there are multiple choices. However, the confidence value
mentioned here is used to directly represent the degree of support for rule, i.e., it represents the single-valued precision
assigned to the rule when received as evidence via an utterance.
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Figure 2. Left: knife; Right: Grasp candidates all across the knife. Cognitive affordances can serve as a
normative constraint when selecting one of these many possible grasp possibilities.

3.3 Executing Affordance-Based Commands

There are numerous examples of DIARC and other cognitive robotic architectures enabling robots
to engage in task based dialogues where a human is able to instruct a robot to perform tasks using
commands given in natural language. The integration of AFFORDANCE into such architectures
allows for the incorporation of affordance information when discussing a task. This allows for a
more natural dialogue, and gives the human and robot more flexibility in the objects they discuss.

Returning to our running example of using a knife, consider a human uttering a command to
the robot: “Pass me something used for cutting.” Currently, DIARC would fail because the GOAL

MANAGER would not be able to handle pairing a known action of “passing” with a non-specific
object reference “something” and a functional affordance concept of “cutting.” Moreover, even a
more specific request of “pass me a knife” would often fail, because there is no guarantee that the
robot will choose to pass the knife by grasping the blade (the normatively appropriate option), as
opposed to the handle, which has similar – if not better – grasp possibilities. As shown in Figure 2
(taken from (Scheutz et al., 2017)), there are many available grasp candidates distributed all across
the knife on the handle and on the blade.

In order to understand the command, the information contained in it needs to be grounded
within the system. We start with the system knowing nothing about knives or how to pass them.
We use the features of DIARC described in (Scheutz et al., 2017) to teach the system what a knife
is and how to pass something. At this point, the robot knows that an observed 3D point cloud is a
“knife” and that certain subsets of this point cloud constitute “handle” and “blade”. Using the object
grasping mechanism described in (Ten Pas & Platt, 2014) it is capable of generating candidate grasp
points (from the geometry of the point cloud) and then scoring these grasp points to determine which
ones are likely to succeed. We use a four-layer deep convolutional neural network to make grasp
predictions based on projections of antipodal grasp points contained between fingers.

Using the approach described in Section 3.2, we assume that a human has taught the robot
cognitive affordance rules about a knife in three utterances as follows,

“A knife is used for cutting”,

“To pickup a knife grab the knife by the handle”,

“To pass a knife grab the knife by the blade.”

The following predicates are produced in BELIEF, as described earlier,
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implies(knife, cutting , high),
implies(pickUp(self , knife), graspObject(self , partOf (handle, knife)), high),
implies(pass(self , knife), graspObject(self , partOf (blade, knife)), high).

Now that the system understands how to pass knives in the context of cutting we can instruct it to
do so using the natural language mechanisms described earlier,

1. Utterance: “pass me something used for cutting"

2. Parse: INSTRUCT (Sam, self , pass(self , usedFor(something, cutting)))

3. Relevant Pragmatic Rule:

INSTRUCT (A,B ,X ) =⇒ want(A,X )

4. DIARC Semantic Representation:

want(Sam, pass(self , usedFor(something , cutting)))

5. Submitted Goal Predicate:

pass(self , usedFor(something , cutting))

Upon goal submission GOAL MANAGER executes the action script associated with the goal. An
action script is hierarchically organized with actions and sub-actions, with bottom-level actions
representing commands issued to the action component (MOTION). The hierarchy for the “pass”
action is shown in Figure 3. Executing an action script of this form involves performing a preorder
traversal of its tree. At each node, we perform three operations for applying learned affordances, in
addition to the operation related to the action itself.

First, an affordance request is sent to AFFORDANCE to getFeatures(), which involves assimi-
lating newly learned affordance rules, identifying relevant affordance rules and returning perceptual
invariants (F) from the antecedents.

AFFORDANCE queries BELIEF for any new implies(X,Y, Z) predicates it may have learned
since its last call. AFFORDANCE maps the arguments into the perceptual invariants (F), contex-
tual items (C) and affordances (A) in the affordance model. Here, we assume that context it-
self is a higher-order action and therefore is captured as a functor-name in the DIARC semantic
representation of the utterance. Thus, “pass” is the action context in implies(pass(self , knife),
graspObject(self , partOf (handle, knife)) high). We recognize that context is not always know-
able or definable in advance, but in this situation, contextual information is explicitly provided in
the utterance, and is therefore available for the system to use. In other instances, the context may be
more implicit and the agent may need to infer it; the proposed approach does not preclude this sort
of inference because the affordance model is generalizable to capture context predicts regardless of
how they are obtained, and that is the subject of future work. The perceptual invariant (F) is avail-
able in the argument to the action context and thus, for example, “knife” is a perceptual invariant
to be added to the rule. The affordance information (A) is available from consequents where the
“graspObject” predicate is flattened. This process, leads to the following affordance rules in our
motivating example,
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Figure 3. Key affordance-related operations during action execution using an exemplary pass action script.
For every node in the action tree four operations are performed: extracting perceptual features and contextual
items from the relevant affordance rules, running a visual search to determine whether these features exist
in the agent’s environment, performing inference with the rules and observations to obtain constraints on
actions, and performing the action with inferred constraints.

r1
def
= knife(K ) =⇒

[0.95,1]
findObject(cutting , knife(K )),

r2
def
= knife(K ) ∧ context(C = pickup) =⇒

[0.95,1]
graspObject(knife(K), handle(P ), partOf (P,K)),

r3
def
= knife(K ) ∧ context(C = pass) =⇒

[0.95,1]
graspObject(knife(K), blade(P ), partOf (P,K)).

Once the rules have been updated to include new additions from BELIEF, AFFORDANCE selects
the rules relevant to the current situation. While we do not provide an in-depth comparison of var-
ious rule-selection approaches, we take a straightforward approach in selecting those rules relevant
to the current action (i.e., the current active node in the action tree) and affordance. We select rules
with consequents containing functor names that match the current action. This is possible since the
syntax and semantics of the affordance predicates match the grounded representations of actions in
GOAL MANAGER and MOTION. In addition to the current action, we use goal predicate information
(including affordance) obtained from the current command to further prune the rules, if necessary.
AFFORDANCE obtains this information by querying BELIEF for usedFor(X ,Y ).

During the “find” action, the only match is rule r1 and thus the only rule that is selected is
associated with functional affordance of the knife. The output from getFeatures() is then sent as a
search request by GOAL MANAGER to VISION to locate them in the agent’s visual field of view. For
example, the perceptual invariant (knife(K )) obtained in the “find” action is then sent back to GOAL

MANAGER, which then initiates a visual search to look for a knife. Upon finding a match, VISION

provides a detection confidence for the object it has identified as being a knife and AFFORDANCE

uses this confidence to perform inference to determine if the deduced action “find” is above a certain
confidence threshold. If so, the object identified as a knife will be selected for further processing.

If a representative visual object is identified, then a second request is made to the affordance
component to getAffordance(), during which affordance inference is performed and the best action
or object constraint is returned. The constraints are then used in connection with the motion com-
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mands and sent to MOTION. Thus, instead of the general command to grasp a knife, which could
result in the agent selecting one amongst a countless number of high-scoring grasp candidates on
the knife, the agent may be constrained to only selecting those on the handle.

At the next node (grasp), this process is repeated, but now there are two rules associated with
grasp, however only one is associated with the context of “pass.” Thus, inference is performed
on this one rule and the constraints knife(K ), blade(P), partOf (P ,K ) is returned and used for
identifying grasp points on the blade of the knife. The agent can then correctly (from a normative
standpoint) passes the knife by the blade.

4. Evaluation

We take a two-step approach to evaluating the affordance-enabled cognitive robotic architecture.
First, we evaluate whether the system implements a correct algorithm (i.e., is it taking the correct
actions when instructed with a cognitive affordance-based natural language command?). We do so
through an extended simulation, in which the entirety of the architecture was put to the test without
external noise or sensor fluctuations that typically occur in real-world settings. Clearly, empirical
real-world runs of the system are important and show how the architecture can perform, not just in
simulation, but on an embodied robot, in which real-time constraints apply. So, in our second step
of the evaluation we tested the architecture on a PR2 robot and provide an uncut video. We describe
each step of the evaluation below.

4.1 Simulation Experiment and Empirical Demonstration

We first tested the correctness of the approach in an extended simulation involving several household
objects and over two-dozen rules. As noted earlier, the goal was to be able to test the proposed
approach in a simulation without perceptual and sensory noise experienced in the real world in
order to focus on evaluating the correctness of the various underlying algorithms.

For the experiment we considered the following eight household objects, each composed of two
parts: Knife (handle, blade), spatula (handle, blade), spoon (handle, bowl), shoe (upper, sole), ham-
mer (handle, head), glass (bowl, stem), mug (handle, barrel), screwdriver (handle, shaft). We con-
sidered five different affordances in the spirit of those used in computer-vision datasets associated
with affordance detection (Myers et al., 2015; Varadarajan, 2015): containing, cutting, pounding,
rolling, and poking.

We restricted the agent’s action repertoire to the actions pass, pickUp, and pointTo. Unlike pass
and pickUp, pointTo involves finding but no grasping. With these objects and actions, we generated
15 different commands (5 affordances times 3 actions) of the form “[action] something used for
[affordance]” (e.g., point to something used for pounding).

We are interested in learning functional affordances and action affordances that contain a no-
tation of confidence. To capture this, we used four terms to represent different degrees of con-
fidence: occasionally, sometimes, often, generally, which we then mapped to specific numerical
values (Kerdjoudj & Curé, 2015). Thus, given eight objects, five affordances and four uncertainties
and three actions, we can generate 288 possible affordance rules (160 functional affordance rules
and 128 action affordance rules).

12
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In any given learning scenario, the agent is taught a set of rules chosen from these 288 possible
rules, thus generating 2288 different possible learning scenarios. Also, since we have eight objects,
we can generate 256 possible scenes involving these objects, which combined with the 15 possible
commands we can give the agent 3840 different problem situations (scene-command combinations).
Testing the proposed architecture across all these possible learning scenarios (3840 ∗ 2288) and
problem situations is infeasible.

Instead, we evaluate the system by (1) choosing a random subset of our evaluation space, and (2)
establishing some general performance expectation for the system in this evaluation space. We limit
our evaluation space by randomly choosing 10 different scenes and testing the agent’s performance
for all 15 commands. With regards to the selection of rules, we arbitrarily choose two different
rule sets representing two different normative standards and provide some expectations for how we
expect the agent to act based on these two distinct learning scenarios. In Scenario A, for each of the
five affordances, we generated a list of objects (ranked highest to lowest confidence) that possess
this affordance. In Scenario B, we reversed the ranking of objects. For example, in Scenario A, a
mug is top-ranked object for the containing affordance while a shoe is a bottom ranked (but still
feasible) object. While, in Scenario B, the shoe is top-ranked and the mug is bottom ranked. These
two scenarios represent our ground-truth rules and Table 2 shows these values.

Table 2. Ground Truth rules in Scenario A. Scenario B can be obtained by reversing the list of each affordance.
Point confidences in parentheses.

Affordance Generally Often Sometimes Occasionally
(0.95) (0.75) (0.5) (0.25)

containing [mug, glass] spoon shoe
cutting knife screwdriver [spatula,spoon]
pounding hammer shoe spatula mug
rolling glass screwdriver
poking screwdriver knife

We used Table 2 to derive functional affordance rules of the form “[object] is [uncertainty] used
for [affordance]” (e.g., “a spatula is sometimes used for pounding"). For action affordances, we
generated 16 rules corresponding to physical grasp affordance rules in the pass and pickup context
for all eight objects, with a single confidence setting of “generally.” For example, “To pass a shoe,
generally grab the shoe by the sole.” Of the 288 rules initially stated, many are somewhat nonsen-
sical by our own normative or practical standards (e.g., a mug being used for cutting). However,
the robot does not know this, and we therefore expect the robot to be able to perform the necessary
affordance inference without this additional commonsense knowledge.

We performed multiple trials during which we generated various tabletop scenes using combi-
nations of the eight objects. We tested both learning sets of affordance rules, and acting on sets of
commands using the proposed architecture. We evaluated the performance of the system by check-
ing if the following principles held true in all trials: (1) if all the objects are in the scene then the
robot must select the top-ranked object for the required affordance, (2) if the top-ranked object is not
available, then the robot must select the next lower ranked object, (3) if there is more than one top-
ranked object with equal measures of confidence, then the robot may select either, and (4) if there
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are no objects available with the required affordance, the robot must tolerate the failure condition
and provide a suitable response.

We ran the experiment across 10 randomly generated scenes of varying sizes (including one with
all the objects). During each run, we taught the 32 above-mentioned rules in each of Scenario A and
B, then we presented a randomly generated scene, and issued each of the 15 commands in sequence.
We ensured that set of scenes in combination with the commands covered the above-mentioned four
performance expectations. Table 3 shows the general form of the two types of affordance related
utterances (Utterance Templates) our system can handle, and the component parts of those templates
that can be expanded as needed for what ever application the system is being used for (Grounded
Concepts), provided they can be grounded in the architecture. It is important to note that these
utterance types are not the only language DIARC can understand, they are added functionality that
coexist with prior functionality.

Table 3. High level syntax of understandable utterances, in JSpeech Grammar Format (JSGF).
Utterance Templates

<statement > a <object> is [<qualifier>] <implies> <use> | to <goal> a <object> [<qualifier>]
<primitive> <object> <mod> <part>

<command> [now | okay | first | then] (<goal> | <primitive>) something <implies> <use> | <primi-
tive> <object> <mod> <part>

Grounded Concepts
<qualifier > sometimes | often | generally | always

<object > mug | knife | wine glass | spatula | spoon | shoe | screwdriver | rock
<implies> used for

<primitive> grab | grasp
<goal> pass | pickup| point to
<mod> by the
<part> red | green | blue
<use> cutting | containing | pounding | rolling

In this evaluation we are interested in whether the integrated system correctly learned the rules
from natural language expressions, and then immediately applied this knowledge correctly to se-
lect the best action. The two learning scenarios described above provide a ground-truth of sorts
as the objects are ranked from best to worst in each scenario. It is important to note here that we
are not interested in evaluating robustness of the underlying low-level perceptual and action sys-
tems themselves. Accordingly, we avoid sensor noise and motion imperfections by running this
experiment as a simulation, and focus exclusively on evaluating the proposed architecture with AF-
FORDANCE. Moreover, the rule uncertainties were set to four distinct and separated values to ensure
that the ground-trth rule sets themselves were not noisy, i.e., without overlapping uncertainty inter-
vals. Since, we are evaluating a normative system, we lose the ability to clearly establish a ground
truth if the underlying rules themselves were noisy. For example, if the uncertainties of a knife and
screwdriver as objects used for cutting are very close to one another and overlapping, then which
object is a better object becomes a more difficult question and without a clear answer supported in
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the ground truth. Thus, given a clear ground-truth and no sensory noise, the proposed architecture
should learn the rules and act correctly 100% of the time.

As expected, we obtained a 100% success rate with the robot inferring the correct functional
affordance and choosing the correct object (for all actions) and choosing the correct grasp locations
(for pass and pick). We observed this success rate across all scenes measured. As one example,
when all the objects were presented, the robot chose the mug when asked to select an object with
the containing affordance. Likewise, the robot correctly identified top-ranked objects for each of
the four affordances. This meant that for Scenario B, the robot correctly identified the shoe as being
the best candidate with a containing affordance.

Our simulation further suggests that any non-100% performance must be due to sensor noise. If
the agent is unable to correctly detect that an object on the table is in fact a knife, when asked for
something used for cutting, then the agent is less likely to find this object as a suitable candidate -
affordance inference will yield an uncertainty that might be below a threshold confidence measure
described earlier.

In addition to the simulation, we further provide an empirical demonstration of a DIARC agent
with a fully integrated cognitive affordance reasoning system in a task driven dialogue involving
multiple human interlocutors. In this demonstration we show the system’s ability to learn new
cognitive affordance rules on the fly, and to reason about these newly learned rules. A video of this
demonstration is located here: http://tiny.cc/affordanceNL2018. We use the motivating example
utterance “Pass me something used for cutting" spoken from a human to robot running cognitive
affordance-enabled DIARC.

4.2 Commands with Implicit Affordances

Thus far, we have presented examples where the requested affordance was explicitly stated, such
as “pass me something used for pounding.” However, the approach presented in this paper is not
limited to such cases and is capable of handling cases where the requested affordance is not explicit.
For example, a command “pound the nail” contains an implicit request for a tool that can do the
pounding. In some sense, the command might actually be suggesting “pound the nail with something
used for pounding,” without saying so explicitly. As before, the robot is taught the normative
affordance rule that a hammer can be used for pounding. But, in order for the robot to be able
to make use of this affordance rule, it must already have an action script that describes how it
should perform the pounding action. Much like the action script depicted as a tree in Figure 3, we
consider an example action script for pound that is composed of a pickup action. It also contains a
moveAbove(nail) action and a series of repeated raise and lower actions to generate the pounding
motion. The pickup sub-action, in turn, contains find , grasp and moveTo(up) sub-sub-actions.
The pound action can be made more complex containing visual actions of sensing the depth of the
nail and identifying when to stop pounding.

In addition to this action description, the action script needs additional knowledge to han-
dle cases when the action is called with a tool explicitly mentioned (e.g., pound the nail with
the hammer) and when the action is called with the tool affordance implicitly suggested (e.g.,
pound the nail). In the implicit case, the highest level pound action must be able to supply a
usedFor(something, pounding) argument to the child pickup action. Thus, the pound action
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must first review the arguments of the goal predicate pound(self , nail) received and parsed from
the command utterance and then provide the arguments self and usedFor(something, pounding)
to the the pickup action. Now, it is possible that the implicit command “pound the nail” was in-
tended to be interpreted as “pound the nail with the hammer”. In this case, the action script would
need to consider other factors (e.g., the intent of the speaker) in order to determine what exactly
was left unsaid – i.e., was it that the speaker intended for the agent to use a specific tool, namely the
hammer, or any tool with a pounding affordance.

With this translation, the rest of command execution proceeds as described in the previous
sections. This example shows that with suitable modifications to the action script, we can handle
commands that contain affordance information explicitly as well as implicitly. It is important to
reiterate a key assumption: that the robot is already equipped with the above-mentioned pound
action script. Learning these action scripts (from natural language or however else) as well as
determining interpretations of unsaid action arguments is beyond the scope of this paper and subject
of ongoing work.

5. Discussion

The above walk-through and simulation show how a set of new social norms, previously unknown
to the agent can be acquired, in one-shot, from natural language instruction. The process of learning
an implication rule of the form described is generalizable to other rules as long as the agent is
familiar with the entities being described. That is, the agent already knows what a knife, handle,
and blade mean. Critically, the new knowledge of the social norm encoded as an affordance rule
is now available for inference by any and all subsystems in a cognitive robotic architecture. As
shown in the evaluation, these rules are put to immediate use by means of a follow-up request
from the human. These are, to our knowledge, the first demonstrations of an agent learning an
unknown affordance norm from natural language instruction and then immediately performing an
action sequence conforming with the rule that it just learned. Moreover, an affordance norm of this
sort may be beneficial to not just an action subsystem of an architecture, but to planning and other
subsystems. A general rule-based structure, coupled with an inference mechanism presented here
allows these other subsystem to query and access these affordance norms, as well.

Note that the above demonstration also shows that the instructions and actions do not have to
pertain to a particular set of sensors or actuators and do not depend on a particular robotic plat-
form. Rather the same inference and learning mechanisms can be carried out in other agents with
different action capabilities. It is also important to note that the proposed approach and learning
methodology are not limited to the particular examples demonstrated, but being implementations of
a general framework for reasoning about affordances to guide normative behavior, are only limited
by the agent’s knowledge of natural language as well as its sensory and actuation capabilities (e.g.,
a Nao robot may not possess adequate gripper capabilities to grab a knife, but will still be able to
reason about the normative aspects of other action capabilities like pointing and can still learn from
instructions about these normative aspects of these actions).

Finally, to demonstrate the extent of learning, we note that current state of the art vision systems
can identify and label objects and object features with a high level of accuracy. Thus, an agent can
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potentially become familiar with names and descriptions for thousands of objects. Along the same
lines, agents can be trained through existing methodologies to build a substantial vocabulary and
grammar allowing for descriptions of an infinite possible set of descriptors for perceptual invariants,
contexts and actions. Hence, it is not possible, nor does it make sense, to evaluate the system
exhaustively by generating every possible combination of rules and checking whether the agent
can learn these rules. The strength of our system is that no mater what set of rules we give it,
provided we have the sensory information to ground them, it will be able to learn and reason about
affordances.

6. Related Work

While affordances have been studied for decades in philosophy and psychology, few computational
approaches have been presented for modeling them in normative contexts, and none for learning
them from natural language, which is an important open problem in affordance-related research in
robotics (Zech et al., 2017). We believe that the proposed approach represents a significant ad-
vance over existing approaches. Existing work in cognitive robotics as well as in AI originated
from the general philosophical and psychological theories and diverged in two directions: statisti-
cal approaches and ontological approaches. The statistical approaches modified and implemented
these general theories in specific domains using statistical formalisms to represent and compute af-
fordances (Steedman, 2002; Montesano et al., 2007; Aleotti et al., 2014; Chan et al., 2015; Ugur
et al., 2015; Koppula & Saxena, 2016). The affordances were modeled as a statistical relationship
between an object, actions performed on the object and the effects of those actions (i.e., success or
failure). There has been some preliminary work to extend this approach by incorporating “environ-
ment” as a fourth entity, thereby providing some degree of situatedness and context (Kammer et al.,
2011). The ontological approaches focused on developing a detailed knowledge-ontology based on
conceptual, functional and part properties of objects, and then used a combination of detection and
query matching algorithms to pinpoint the affordances for objects (Varadarajan, 2015). However,
neither approach considered the influence of social or normative (and non-perceptual) factors in
affordance perception.

More recently Shu et al. (2016) presented a framework for reasoning about “social affordances”
and provide a system that can act in social scenarios. However, the underlying affordance model
is still largely devoid of contextual or normative reasoning, i.e., non-perceivable aspects of af-
fordances, and is focused just on physical geometries of objects, i.e., perceivable aspects of af-
fordances, in these scenarios (in this case skeletal geometries). Other work in robotics has ex-
plored mechanisms for detecting context and social contextual perception at both an individual level
(O’Connor & Riek, 2015; Nigam & Riek, 2015; Parashar et al., 2015), as well as in group-level ac-
tivities (Okal & Arras, 2014). However, these approaches do not provide a generalized model or
integration of normative affordance perception of objects in a robotic architecture.

Thus, more generally, despite these past efforts, the task of computationally modeling affor-
dances faces many challenges that have not been overcome in the previous work. These past efforts
do not allow for reasoning about normative affordances, and from an architectural standpoint, most
affordance processing is subsumed by the sensor processing (e.g., vision) or higher-level cognition
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(e.g., planning), which does not allow for an effective interaction between top-down and bottom-up
processing of information in these past systems. Moreover, none of the current approaches show
how affordances can be learned from natural language.

7. Conclusions and Future Work

The expressive framework of cognitive affordances treats an affordance as normative condition-
action rule. In a sense, it extends the traditional Gibsonian notion of an affordance as a relation
between an object and an action to include other non-perceptual aspects influencing action selection
such as context, intentions, and social conventions. In this paper, we provide two contributions: (1)
a grounding and integration of this theoretical framework within a robotic architecture, and (2) an
approach to learning cognitive affordances from natural language instruction. To accomplish this
task, we extended recent work in instruction-based one-shot learning to be able to parse and learn
cognitive affordance rules. The predicates and terms that constitute the rules contain perceptual and
action concepts that are grounded within the DIARC cognitive robotic architecture. For each action
that the robot must perform, we proposed several operations that obtain sensory information from
the robot’s perceptual system, perform inference over a set of relevant cognitive affordance rules
that constrain the action, and execute the constrained action. We evaluated the approach through an
extended simulation and empirical real-world runs of the proposed robotic architecture implemented
on a PR2 robot. Critically, we were able to show that not only can an agent learn normative behavior
from instruction, but immediately apply this newly acquired knowledge to the task at hand. This to
our knowledge is the first conceptual and robotic demonstration of an agent learning an unknown
affordance norm from natural language instruction and then immediately performing an action se-
quence conforming to the rule that it just learned. We believe that these capabilities are necessary
to allow agents to work effectively with humans and dynamically learn and perform tasks in a way
that respects prevailing social norms. The approach presented in this paper does not currently in-
corporate commonsense knowledge about objects and their similarity to other like-objects. Thus,
the cognitive affordance rules that are learned from natural language are limited to the particular
object explicitly taught. One direction of future work is to explore how to induce new cognitive
affordance rules using commonsense knowledge. For example, we would like for the system to
know and use the fact that knives and screwdrivers are both tools that have pointed ends and must
be handled carefully. Then, when we teach the robot how to safely pass a knife, we would like for
it to subsequently induce a comparable rule for the screwdriver, as well.
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