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Abstract

Human behavior is frequently guided by social and moral
norms; in fact, no societies, no social groups could exist with-
out norms. However, there are few cognitive science ap-
proaches to this central phenomenon of norms. While there
has been some progress in developing formal representations
of norm systems (e.g., deontological approaches), we do not
yet know basic properties of human norms: how they are
represented, activated, and learned. Further, what computa-
tional models can capture these properties, and what algo-
rithms could learn them? In this paper we describe initial ex-
periments on human norm representations in which the context
specificity of norms features prominently. We then provide a
formal representation of norms using Dempster-Shafer Theory
that allows a machine learning algorithm to learn norms un-
der uncertainty from these human data, while preserving their
context specificity.

Keywords: social cognition, moral psychology, computa-
tional modeling, machine learning

Introduction and Motivation

Someone’s cell phone begins to ring in the library. The person
quickly answers it by whispering “hold on,” then leaves the
library and takes the call in a normal voice outside. The per-
son understands that taking a phone call in the library is not
socially acceptable, though briefly whispering is. Somehow,
the situation activated a set of norms in this person’s mind,
including: “when someone calls you, you should answer the
phone”; “when in a library, you must not talk on the phone”;
“when in a library, you may briefly whisper.”

Humans living in social communities function more ef-
fectively and peacefully when their actions are guided by
a shared set of norms (Bicchieri, 2006; Ullmann-Margalit,
1977). The ability to represent and follow norms has many
advantages: Norm-consistent actions increase multi-party co-
ordination and cooperation and thus benefit the community
as a whole. Norms also simplify people’s action selection
and standardize behaviors across time and generations. And
norm-consistent actions are more predictable and understand-
able (Malle, Scheutz, & Austerweil, 2017).

But how does the human mind represent norms, and how
are they activated and learned? Surprisingly, there are few
cognitive science approaches to the central phenomenon of
norms. Logical and specifically deontological approaches
have been proposed to formally represent a system of norms
(Bringsjord, Arkoudas, & Bello, 2006; Scheutz & Malle,
2014; Pereira & Saptawijaya, 2009; Beller, 2010). These are
important starting points, but their formalizations do not nec-
essarily correspond to how norms are represented in the hu-
man mind. By contrast, a cognitive science approach would
aim at an account of how norms are cognitively represented,
how they are activated in relevant situations, and how they
are learned in the first place. Here we take a first step to-
ward such an account, following a recent theoretical pro-
posal (Malle et al., 2017). We introduce a basic formal rep-
resentation of norms that allows us to examine the mentioned
cognitive properties of norms (representation, activation, and
learning), and we ask what computational models can capture
these properties, and what algorithms could learn norms.

Our paper has three main parts. In the first, we present
a novel belief-theoretic norm representation format that ex-
plicitly captures the context-specificity of norms and incorpo-
rates uncertainty associated with norm representations, using
Dempster-Shafer Theory (Shafer, 1976). In the second part,
we introduce experimental data on human norm representa-
tion and activation that underscore the context-specificity of
norms and community members’ strong but imperfect agree-
ment (uncertainty) over norm applications. In the third part
we use our formal norm representation to ask how such im-
perfect norms systems can be learned by a computational al-
gorithm that honors several of the critical features of norms,
including their context specificity and uncertainty.

Part 1: A Representation Format for Norms

We begin by briefly outlining our norm representation for-
mat in first-order logic and provide some intuitions as to how
context and uncertainty are accounted for in the format. The
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purpose is to introduce some terminology and a minimal de-
gree of formalism in the proposed approach, which will later
be useful in developing an algorithm that can learn norms.

Consider a first-order alphabet £, in which we have all the
standard symbols (variables, predicates, functors) and logical
connectives. In a deontic alphabet, we further include O, F, P
that denote modal operators (generally, D) for obligatory, for-
bidden and permissible, respectively. In this alphabet, we de-
fine a norm, as follows:

Definition 1 (Norm). A norm is an expression of the form:
N :=Cy,...,C, = (m)D(Ay,...,An),

where C represents context conditions and A represents ac-
tions or states. The norm expression states that when the con-
textual atoms C; are true then the Actions or States A;j are
either obligatory, forbidden or permissible, or their negation.

This type of norm definition follows an approach to nor-
mative reasoning and norm formalism that some of us have
taken previously (Malle et al., 2017; Bringsjord et al., 2006;
Scheutz & Malle, 2014).

In this paper, we expand the above representation format
by explicitly accounting for uncertainty of a norm as follows:

Definition 2 (Belief-Theoretic Norm).
norm is an expression of the form:

A belief-theoretic

AN :=[o,B]:: Cyy...,.Cp = (0)D(A4,...,An),

where [a.,B] represents a Dempster-Shafer uncertainty in-
terval, with0 <o < B < 1.

Example 1 Consider an example of an agent reasoning
about actions it can perform or states it can enter in a li-
brary. We can represent this scenario as a Belief-Theoretic
Norm System, T, as follows:

=1[0.9,1] :: in(library,X) = O state(X,quiet)
[0.8,0.95] :: in(library,X) = P action(X,reading)
=10.9,1] :: in(library,X) = F action(X,yelling)
=10,0.3] :: in(library,X) = O action(X ,talking)
=1[0.3,0.6] :: in(library,X) = F action(X ,talking)
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The norms in this example have intuitive semantics.
They generally state that when agent X is in the Ili-
brary (i.e., in(library,X)), then the norm is activated
and the agent is obligated to enter a certain state (e.g.,
state(X ,quiet)) or prohibited from performing a certain ac-
tion (e.g., action(X,talking). The location of the center of
the uncertainty interval generally suggests the degree of truth
of the norm applying and the width of the interval generally
suggests the level of support or evidence for that norm. So
norms Aj, As, and A5 have tight uncertainty intervals close
to 1 indicating a confident support for their truth. Norm Aj
states that the action of “talking” is obligatory in libraries. Al-
though the uncertainty interval for this norm is tight, the cen-
ter is closer to zero indicating confident support for the falsity

of the norm. Finally, in rule Aj5 the question of whether talk-
ing is forbidden in a library may be more uncertain, generat-
ing a wider interval centered close to 0.5, indicating support
for both truth and falsity, but a general lack of confidence in
the evidence.!

A belief-theoretic norm system of this form allows the sep-
aration of evidence from the norms themselves. The evidence
may come in different forms across different modalities and
from different sources. The norm system, however, displays
the agent’s current level of belief about a set of norms that are
influenced by the evidence.

In any given situation, the agent may not be reasoning with
every norm in a norm system. Instead, the agent may consider
a subset of the system, perhaps including only norms that are
applicable to the current situation. We capture this intuition
in a norm frame, defined below.

Definition 3 (Norm Frame). A norm frame 9\5(@) is a set of k
norms, k > 0, in which every norm has the same set of con-
text predicates and corresponds to the same deontic operator.
Thus, in Example 1, norms N5 and N5 would constitute a
norm frame.

We define a norm frame in this way because it allows for
cognitive modeling in a situated manner—that is, reasoning
about behavior relevant to a specific situation. This context-
specificity provides a convenient constraint that can help sim-
plify computation and better capture human norm representa-
tions, as introduced next.

Part 2: Norm Representation and Activation in
Human Data

We are currently engaged in an empirical research program
that tests a number of novel hypotheses about the cognitive
properties of norms (Malle et al., 2017). Here we summa-
rize two experiments that illustrate some of these properties
and provide the learning data for the norm learning algorithm
we introduce in Part 3. In the first experiment, participants
generated norms relevant to a variety of contexts; in the sec-
ond experiment, participants detected norms relevant to those
contexts.

Methodology

In the generation experiment (Kenett, Allaham, Austerweil,
& Malle, 2016), participants (n = 100 recruited from Ama-
zon Mechanical Turk, AMT) inspected four pictures, one at
a time, that depicted an everyday scene (e.g., library, jog-
ging path; see Figure 1 for examples). While inspecting
each picture, they had 60 seconds to type as many actions as
came to mind that one is “allowed” to perform in this scene

IThe use of deontic logic for normative reasoning is the subject
of active debate. Although further discussion of this debate is out-
side the scope of this paper, we note that our proposed approach does
not require using deontic operators. We can still reason about norms
and learn them using the schema described in Definitions 2 and 3.
We would simply need to replace the deontic operators and modify
the predicates slightly. Norm A5 in example 1 would become:

A5 :=[0.3,0.6] :: in(library,X) = forbidden(X ,talking)



(Permissions), or is “not allowed” to perform (Prohibitions),
or is “supposed” to perform (Prescriptions). This between-
subjects manipulation of norm type was constant across pic-
tures so that each participant answered the same question
(e.g., “What are you permitted to do here?”) for all four pic-
tures they encountered.

Library

Figure 1: Four sample scene pictures used to elicit norms

To increase generalizability at the stimulus level, the total
number of scenes used in the experiment was in fact eight,
four that previous participants had tended to describe as lo-
cations (e.g., library, cave), and four that they had tended
to describe as activities (e.g., jogging outdoors, serving in a
restaurant). Each participant was randomly assigned to re-
ceive either the “location” set or the “activity” set. Item set
made no difference in the results.

The resulting verbal responses were lightly cleaned for
spelling and grammatical errors and responses identical in
meaning were assigned the same response code, using a con-
servative criterion so that variants such as “listening” and “lis-
tening to music” were counted as distinct. The resulting data
structures were then analyzed for consensus (i.e., how many
people generated a given response for a given scene) and con-
text distinctiveness (i.e., whether a response generated for one
scene was also generated in a different scene).

In the detection experiment, we presented participants (n
= 360 recruited from AMT) with the same pictures, four per
participant. Along with each picture, we presented 14 actions
(randomly ordered, one at a time) that a person might perform
in this context. Any given participant’s task was the same for
each of their four pictures: to consider the particular scene
and judge whether each of the 14 actions is either permitted,
or prescribed, or prohibited. This norm type factor was again
a between-subjects manipulation and hence constant across
pictures. In addition, to increase generalizability, we used
two different formulations for each norm type, summarized
in Table 1. Formulation made no difference in the results.

The 14 actions assigned to a given scene under a given
norm type (e.g., Library/permitted) consisted of seven “lo-
cal” and seven “imported” actions. Local actions were the

Table 1: Eliciting Probes for Three Norm Types

] Norm Type Probe formulations
Permission | Are you allowed to do this here?
Are you permitted to do this here?
Prohibition | Are you not allowed to do this here?
Are you forbidden to do this here?
Prescription | Are you supposed to do this here?
Should you do this here?

seven most frequently generated actions for the given scene
and norm type in the above generation experiment—for ex-
ample, the seven actions most frequently mentioned to be per-
mitted in the library. Imported actions were comprised of
top-seven actions generated for other scenes (but under the
same norm type). Thus, imported actions were still frequent
responses to the same norm probe, but in different contexts.?
Table 2 provides an illustration of this selection process.

Table 2: Origin of Selected Actions for Library Scene

Action Origin

Local, permitted

reading from top 7 of Library
studying from top 7 of Library
sitting from top 7 of Library
checking out a book from top 7 of Library
learning from top 7 of Library

being quiet
using computers

from top 7 of Library
from top 7 of Library

Imported, permitted

eating from top 7 of Beach

walking from top 7 of Cave

listening from top 7 of Boardroom
filling boxes from top 7 of Harvesting
washing hands from top 7 of Public Bathroom
running from top 7 of Jogging

talking from top 7 of Restaurant

Experimental Results

We begin by highlighting three findings from the generation
experiment.® First, even though people were entirely uncon-
strained in their norm-guided actions, they showed a great
deal of consensus on the most central norms for each sce-
nario. Table 3 displays (in column Consensus) the seven most
frequently mentioned permission norms in two representative
scenarios, Library and Jogging, with consensus computed as
the percentage of participants who mentioned the particular

2We ensured that the imported actions were physically plausible
in the given scene/context.

3We focus here on permissions. Prescriptions and prohibitions
show very similar patterns overall, but prohibitions differ from the
other two norm types in interesting ways (e.g., less consensus,
slower activation) that will be treated in a separate investigation.



action as permitted in the scenario. (The patterns are con-
sistent across other scenarios.) Second, the most consensual
norms are mentioned early on; in other words, what comes to
mind first is likely to be a consensual norm. Table 3 shows (in
column Position) the average rank position (1 = first, 2 = sec-
ond, etc.) at which each action was generated, whereby the
expected position under a random distribution would be 4.2
for Library and 4.6 for Jogging. Third, the norms generated
for the eight scenarios showed remarkable context specificity.
Not only do the two illustrated scenes have no norm in com-
mon among their top seven, but of the 56 permitted actions
that were mentioned in the top-7 in each of the 8 scenes, only
5 appeared in more than one scene.

Table 3: Permission Norms for Library and Jogging Scenes
in the Norm Generation Experiment

Library

Permitted Action Consensus | Position
reading 84% 2.1
studying 68% 1.8
sitting 47% 3.1
checking out books 47% 4.4
using computers 32% 53
learning 32% 6.0
being quiet 32% 7.5
Jogging

walking 87% 1.4
running 87% 1.9
jogging 53% 4.8
talking 53% 5.1
listening to music 33% 4.3
biking 27% 4.7
looking at birds 27% 6.2

Two main results stand out from the detection experiment.
First, people showed very high consensus in affirming the
permissibility of the seven local actions for their respective
scenes. For both Library and Jogging, this rate was 99%;
and across all scenes, the number was 97.2%. That is, even
though some of these local actions were actively generated
as “permissible” by only a third or half of previous partici-
pants (see Table 3), when directly confronted with these ac-
tions, people almost uniformly recognized their permissibil-
ity. (Moreover, this recognition was fast, taking only about
1100 ms on average.)

Second, participants clearly distinguished between the lo-
cal and the imported actions, accepting the latter as permis-
sible at a significantly lower rate. For Library, this rate was
43%; for Jogging, it was 75%; and across all scenes, it was
66.1% (all statistical comparisons to local actions p < .001,
signal detection discrimination parameter d’ = 1.49). That is,
for a given context on average, 34% of presented actions were
judged to be not permitted even though they were explicitly
deemed permissible in other contexts.

These results suggest that norms can be activated by static

photographs, and people show high agreement in explicitly
recounting these norms (generation experiment). In a more
implicit setup (detection experiment), people are fast and al-
most unanimous in affirming the most important norms of a
given context and differentiate them well from norms origi-
nating from a different context. Thus, both explicit and im-
plicit judgments show substantial context sensitivity. If these
are some of the properties of human social and moral norms,
how can they possibly be learned, by humans and machines?

Part 3: Learning Norms
How Do People Learn Norms?

In learning social and moral norms, people deal with multi-
ple different norm types (permissions, prescriptions, prohibi-
tions), using many different learning mechanisms, and taking
input from many different sources. Here we focus on the pro-
cess of learning permission norms from simple observation,
using responses from a sample of community members de-
scribed earlier in the detection experiment. Our main goal is
to put our proposed computational framework to a test. In the
future we will develop further applications (e.g., learning of
obligations or learning from instruction)

Consider a person who has never spent time in a library.
Upon entering one for the first time, he observes several peo-
ple reading, studying, and a few whispering. Some sit at
computers, one is eating while sitting in an armchair, al-
though there is a sign that says "No food or drink in the li-
brary.” Our observer also sees several people at the check-out
counter, subsequently exiting the library, where another sign
says "Don’t forget to check out.” Briefly, a younger person
runs alongside the stacks but then sits down next to an adult.

The number of people performing each behavior, their age,
expertise, appearance, perhaps responses from others, and the
meaning and force of various physical symbols will all con-
tribute to the speed and confidence with which our protago-
nist learns the norms of a library. Below we offer a data rep-
resentational format that incorporates these and other prop-
erties of the norm learning process, a format that can also
accommodate partial information and unknown prior proba-
bility distributions and that can be extended to other learning
mechanisms, such as verbal instruction or trial and error.

Data Representation Format of Norm Learning

Consider a set S = {s1,...,s,} of n evidence sources. For ex-
ample, an evidence source s; could be a student in the library,
the librarian, or a sign at the entrance. To simplify, we are
interested in learning about a norm frame Q\Gf) comprising k
norms (out of a larger possible set) that all share the same de-
ontic type (here, permissions) and the same general context
precondition (here, library).

Let an endorsement e; ; be the i’ data source’s endorse-
ment of the j norm, where e € {0,1,€}. The value ¢; ; is a
form of truth assignment, indicating whether the source en-
dorses the norm to be true (1), false (0) or unknown (€). For
example, an observation that a student is reading can be in-



terpreted as showing that this student endorses the norm A
to be true in this context, hence oy = 1. The set &, rep-
resents a given source’s finite set of endorsements within a
given norm frame, such that |®,| = k.

Informally, for a set of norms in a given context and for
a particular source, we can learn about that source’s endorse-
ment of each norm; if we also assign a weight (e.g., reliability,
expertise) to the source, we form a data instance. Multiple
data instances (i.e., evidence from multiple sources) form a
data set. More formally:

Definition 4 (Data Instance). A data instance d =
(N2, si,Ds;,my;) is a tuple comprising a norm frame N2,
a specific source s;, a set of endorsements @, provided by
that source, and a mass assignment myg, corresponding to the
amount of consideration or reliability placed on source s;.

Definition 5 (Dataset). A dataset D is a finite set of n data
instances {d\,...,d,}.

Some of the desirable properties of the proposed data
representation format are that we can accommodate various
types of sources (e.g., behavior, verbal responses, signs and
symbols), differential source reliability (mass), order effects
(updates can be tuned, if necessary, to the order of received
data), missing and imprecise information (we use € to repre-
sent ignorance), lacking prior probability distributions (we do
not require any priors), and varying norm dependencies (e.g.,
we can capture a correlation between the prohibition to yell
and the prohibition to talk).

Algorithmic Learning of Experimental Data

We can now apply this representation format to the detec-
tion data we introduced earlier. The detection experiment
featured, for each scene, a norm frame 9\48 with k = 14 poten-
tially permissible actions, where half of the potential actions
had been specifically identified as permitted in this scene and
the other half as permitted in other scenes (see Table 2). Each
participant, s;, indicated whether each of 14 actions was in
fact allowed in this scene, providing responses of yes (1) or
no (0) or no response (€), thus forming a set of endorsements
®,,, with |P| = 14. In this particular case we treat all sources
as equally reliable, hence carrying identical my, weights.

With these representations in hand we can formally define
the norm learning problem within our framework and set the
stage for an algorithm to analyze evidence and derive a norm
structure for a given context in a given community. We re-
mind the reader that, according to Definition 2, any norm
(e.g., with respect to reading in a library) has an uncertainty
interval [0, ;] associated with it, which reflects the quality
and consistency of the evidence for a given norm to hold. The
learning problem thus becomes a parameter learning problem
for discovering the values of the uncertainty interval for each
norm in a norm frame:

Definition 6 (Norm Learning Problem). For a norm
frame MQ and dataset ‘D, compute the parameters
o, ..,0,B1,- .., Pk of that norm frame.

As noted earlier, each data instance d represents a po-
tential arrangement of true and false values for each of the
norms in a frame. Setting aside the possibility that e; ; = €,
each data instance thus provides a k-length string of 1s and
Os (a given participant’s response string in the detection ex-
periment). This string is a sample of the normative endorse-
ments in the given community. The norm learning algorithm
represents each string as a hypothesis in a set of hypotheses
(termed Frame of Discernment in Dempster-Shafer theory)
and assigns uncertainty parameters to each norm, updating
those values as it considers each new data instance. Algo-
rithm 1, displayed below, achieves this form of norm learn-
ing from a human dataset.

Algorithm 1 getParameters(D, %9)

1: D= {dy,...,d,}: Dataset containing n data instances for a
norm frame

2: : An unspecified norm frame containing k norms A’

3: Initialize DS Frame ® = {8},...,0x }

4: m(@)=1

5: foralld € D do

6: forall A\l € 9\6(® do

7 Set learning parameters p; and p,
Bel(NNd

8: Bel(N|d) = Bel(ﬂ\[ﬂ;ﬁPl()d\N)
PI(NNd

9: PI(N|d) = Pl(?\[ﬁd()gJ\fBel)(d\f)\[)

10: Bel(N)new = p1 'Bel(N)prev + p2 - Bel(N|d)

11: Pl(g\onew:[’l‘Pl(g\[)prev+P2'Pl(N|d)

12:  end for

13:  Set frame © with Bel (N)new and PL{N) new
14: end for
15: for all A\ € 9\6(6 do

16: 0y < Bel(N)
17: By + PI(N)

18: end for
19: return (X],...,(Xk,ﬁ],...,l_))k

The algorithm iterates though each data instance in the data
set (line 6) and, per instance, through each norm in the norm
frame (line 7). For each iteration, we first set the hyper-
parameters p; and p» (line 8) that specify how much weight
the algorithm will place on previous learned knowledge (p1)
and on each new data instance (p;). These hyper-parameters
are then used to compute a conditional belief and plausibil-
ity for a norm given that particular instance of data (lines
9,10). The conditional beliefs and probabilities then yield
an updated belief and plausibility for each norm (lines 11,
12). Finally, the algorithm updates the uncertainty interval
for each norm with the new belief and plausibility values.

The result is a set of belief-theoretic norms (norms accom-
panied with uncertainty intervals), where the width of the un-
certainty interval indicates the amount of support for the norm
(which may vary, for example, as a function of number of re-
spondents in the human data sample) and the center position
of the interval should correspond to the level of agreement in
the human respondents’ endorsement of the norm.

To put this algorithm to the test, we selected, from our de-
tection experiment, a norm frame of 6 (out of 14) actions for
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the context of Library and a frame of 6 (out of 14) actions for
the context of Jogging Path. However, we wanted to capture
the context specificity of norms and constructed the frames
such that 4 actions (running, sitting, walking, and washing
hands) were the same in each frame, albeit differentially en-
dorsed in the two contexts (e.g., running was clearly not per-
missible in Library but very much permissible in Jogging).
Thus, the algorithm had to track the norm value of a given
action not in general, but conditional on the specific context.
If the algorithm succeeds it should recognize which actions
people consider permissible and which ones they consider im-
permissible, for each of the two contexts, and even for those
actions that occur in both contexts.

Figure 2 illustrates this success. We display single runs of
the algorithm across the dataset. In the single runs, the algo-
rithm considers each data instance (each of 30 participants’
judgments) in each context once (in a fixed order), leading to
wide uncertainty intervals at first, but narrower ones as the
number of data instances increases (up to the maximum of
30) . We also performed iterative runs (not shown), in which
the algorithm considers the dataset multiple times, each time
randomly selecting a possible order of instances, and con-
verging on an optimal estimate of the norm endorsements in
the given community. These estimates are highly comparable
to the end points of single runs after 30 data instances.

Library Jogging
1.00 1 ® |
0.75 4 Sitting Sitting ®
0.50
0.25
0.00
1.00 1 [ 3
[ ]
0.75 1 Walking Walking
0.50
0.25
0.00 ;
1.00 4 [ ]
0.75 Runping Running
0.50
0.25 1
[ J
0.00 1 A
1.00
0.75 Washing Hands Washing Hands
0.50
0.251 — ®
[ ]
0.00

(I) 5‘ 1‘0 1‘5 2‘0 Z’5 3‘0 ’ 6 é 1‘0 1’5 Zb 2‘5 3‘0
Data Instances

Figure 2: Single run of learning across two contexts. The
narrowing shaded regions indicate converging uncertainty
intervals as new data instances are processed. Filled cir-
cles represent the descriptive statistics from the experimen-
tal data, indicating actual norm endorsement averages among
participants—the proportion of participants who answered
yes to the question: “Is this action allowed here?”” The algo-
rithm displays convergence towards the descriptive statistics
(which it was not given), while maintaining a level of uncer-
tainty reflecting the imperfect agreement within the data.

Conclusion

In this paper we presented a formal representation of norms
using first-order logic and Dempster-Shafer theory. The rep-
resentation captures the context specificity of norms that our
experimental data suggest are strongly present in humans.
Using a data representation format that incorporates several
properties of human norm representation and learning, we
then developed a novel algorithm for automatically learning
context-sensitive norms from the human data. Because the
data format is highly generalizable, norms could be learned
from different types of evidence sources in different con-
texts, and explicitly captures uncertainty due to variations in
the source’s reliability and the quality of the evidence. The
proposed representation and learning techniques provide a
promising platform for studying, computationally, a wide ar-
ray of cognitive properties of norms.
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